VECTORS IN \mathbb{R}^n , OPERATIONS, SCALAR PRODUCT

Mathematics I — Exercises for Land Resources Management

Academic Year 2025/2026

Prof. UPP Agnieszka Łacka, PhD, DSc

Department of Mathematical and Statistical Methods Poznań University of Life Sciences

1. Given points **A**, **B**, **C**. Find the components and lengths of the vectors: \vec{AB} , \vec{AC} , \vec{CB} . Draw a diagram:

(a)
$$\mathbf{A} = (-1, 2), \mathbf{B} = (1, 0), \mathbf{C} = (2, 2)$$

(b)
$$\mathbf{A} = (1, -4), \mathbf{B} = (5, 3), \mathbf{C} = (2, 5)$$

(c)
$$\mathbf{A} = (-4, 6), \mathbf{B} = (-3, -1), \mathbf{C} = (6, -4)$$

(d)
$$\mathbf{A} = (7, -3), \mathbf{B} = (-2, 4), \mathbf{C} = (-4, 6)$$

(e)
$$\mathbf{A} = (2,3), \mathbf{B} = (-6,0), \mathbf{C} = (3,2)$$

(f)
$$\mathbf{A} = (-1, 3), \mathbf{B} = (1, 4), \mathbf{C} = (-2, 2)$$

(g)
$$\mathbf{A} = (3, 2), \mathbf{B} = (1, 3), \mathbf{C} = (1, 2)$$

(h)
$$\mathbf{A} = (-2, 2), \mathbf{B} = (3, 0), \mathbf{C} = (0, 2)$$

2. Given vectors \mathbf{u} and \mathbf{v} . Find the vectors $\mathbf{u} + \mathbf{v}$, $\mathbf{u} - \mathbf{v}$, $2\mathbf{u}$, $-\frac{1}{3}\mathbf{v}$, $3\mathbf{u} - 2\mathbf{v}$, $\frac{1}{2}\mathbf{u} - \frac{2}{3}\mathbf{v}$, $\frac{1}{3}\mathbf{u} - \frac{2}{3}\mathbf{v}$ and compute their lengths:

(a)
$$\mathbf{u}^T = [2, -3], \mathbf{v}^T = [1, 4]$$

(b)
$$\mathbf{u} = \begin{bmatrix} -2 \\ 6 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

(c)
$$\mathbf{u}^T = [-1, 2, 1], \mathbf{v}^T = [1, 0, 2]$$

(d)
$$\mathbf{u} = \begin{bmatrix} 7 \\ -2 \\ -2 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1 \\ 5 \\ -4 \end{bmatrix}$$

(e)
$$\mathbf{u} = 2 \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$
, $\mathbf{v} = - \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

(f)
$$\mathbf{u} = -3\mathbf{i} + \mathbf{j}, \ \mathbf{v} = 3\mathbf{i} - 5\mathbf{j}$$

(g)
$$\mathbf{u} = 8\mathbf{j}, \mathbf{v} = (-3)(-2\mathbf{i} + \mathbf{j})$$

(h)
$$\mathbf{u}^T = -2[0, 7, 2], \mathbf{v}^T = 5[1, 2, 2]$$

(i)
$$\mathbf{u} = 3 \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$
, $\mathbf{v} = -2 \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$

(j)
$$\mathbf{u} = -(4\mathbf{i} - \mathbf{j}), \, \mathbf{v} = 2(\mathbf{i} - 3\mathbf{j})$$

(k)
$$\mathbf{u} = 2\mathbf{i} - 3\mathbf{j}, \mathbf{v} = -6\mathbf{i} + 4\mathbf{k}$$

- 3. Compute the scalar product $\mathbf{u} \circ \mathbf{v}$ for the pairs of vectors from Task 3.
- 4. Compute the cosine of the angle between the vectors \mathbf{u} and \mathbf{v} (for the pairs of vectors from Task 3).

- 5. Given points \mathbf{P} , \mathbf{Q} and $\mathbf{R} = (x, y, z)$, find values x, y and z such that the vector $\vec{\mathbf{P}}\mathbf{R}$ is orthogonal to the vector $\vec{\mathbf{P}}\mathbf{Q}$:
 - (a) $\mathbf{P} = (8, -3, 5), \mathbf{Q} = (6, 1, 7)$
 - (b) $\mathbf{P} = (2, 1, 5), \mathbf{Q} = (8, 4, 6)$
 - (c) $\mathbf{P} = (1, 0, 0), \mathbf{Q} = (0, 1, 0)$
 - (d) $\mathbf{P} = (3, -5, 5), \mathbf{Q} = (2, 1, 6)$
 - (e) $\mathbf{P} = (4, 0, -1), \mathbf{Q} = (2, 4, 2)$
 - (f) $\mathbf{P} = (0, 1, 4), \mathbf{Q} = (5, 2, 1)$
 - (g) $\mathbf{P} = (1, 2, 3), \mathbf{Q} = (2, 2, 2)$